首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2999篇
  免费   709篇
  国内免费   826篇
测绘学   337篇
大气科学   1005篇
地球物理   838篇
地质学   1208篇
海洋学   615篇
天文学   91篇
综合类   149篇
自然地理   291篇
  2024年   13篇
  2023年   45篇
  2022年   109篇
  2021年   143篇
  2020年   153篇
  2019年   148篇
  2018年   153篇
  2017年   146篇
  2016年   160篇
  2015年   170篇
  2014年   234篇
  2013年   233篇
  2012年   219篇
  2011年   239篇
  2010年   216篇
  2009年   215篇
  2008年   192篇
  2007年   186篇
  2006年   200篇
  2005年   178篇
  2004年   148篇
  2003年   152篇
  2002年   102篇
  2001年   88篇
  2000年   107篇
  1999年   69篇
  1998年   71篇
  1997年   71篇
  1996年   62篇
  1995年   50篇
  1994年   51篇
  1993年   43篇
  1992年   32篇
  1991年   22篇
  1990年   24篇
  1989年   19篇
  1988年   24篇
  1987年   8篇
  1986年   11篇
  1985年   10篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1954年   2篇
排序方式: 共有4534条查询结果,搜索用时 17 毫秒
131.
The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
132.
偏振激光雷达探测大气—水体光学参数廓线   总被引:2,自引:2,他引:0  
激光雷达在上层水体垂直廓线的遥感中展现出巨大优势。本文研制了一套高垂直分辨率的实时探测偏振激光雷达,提出了一种基于偏振激光雷达回波信号的反演算法,采用Fernald理论和多次散射原理反演非均匀大气—水体的衰减和退偏光学产品,以高效稳定地处理偏振激光雷达实验数据。展示了一个中国内陆水体激光雷达探测实例,观测到了两次气溶胶积聚现象和一次水体浑浊现象。对实验数据的分析表明,退偏比主要由前向多次散射和后向单次散射产生的退偏两部分组成。当多次散射强度较大时,退偏比的变化主要取决于多次前向散射退偏;反之,则主要依赖于单次后向散射退偏。  相似文献   
133.
杨兵  侯一筠 《海洋与湖沼》2020,51(5):978-990
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=10~(12)W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺度涡旋涡度仅改变近惯性能通量的空间分布,而对全球近惯性能量输入功率的影响可以忽略。  相似文献   
134.
中国科学院海洋研究所在开展西太平洋马里亚纳海山区多学科综合科学考察的过程中,利用“科学”轮船载的全水深多波束测深系统Seabeam3012对多个海山进行了地形测量工作。针对作业过程中遇到的恶劣海况导致采集数据质量差、多波束系统易检测错误海底信息、测线布设难度大等问题,提出了基于船体姿态对数据质量影响分析的多波束测线方向优化、基于地形变化并参考浅地层剖面资料的作业参数优化和基于实时采集情况的多波束采集测线布设优化等一系列措施,有效地提高了海山区多波束数据采集质量,并提高了作业效率。获得的高品质地形数据,为多学科协同研究奠定了基础,为ROV等设备的现场作业提供了安全保障。  相似文献   
135.
Abstract

This article deals with the effect of salinity variation on underwater wireless optical communication (UWOC). Effect of different concentration of salt on underwater optical communication has been carried out experimentally in terms of received power at different link lengths. Based on the analysis of experimental data, a mathematical model has been proposed to describe the saline water channel. A simulation study is performed for different data rates and link lengths. It is seen that with increased salinity the attenuation is higher and the UWOC system performance degrades with higher data rate and increased link length.  相似文献   
136.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   
137.
Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (DLOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1--9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks.  相似文献   
138.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
139.
An understanding of temporal evolution of snow on sea ice at different spatial scales is essential for improvement of snow parameterization in sea ice models. One of the problems we face, however, is that long‐term climate data are routinely available for land and not for sea ice. In this paper, we examine the temporal evolution of snow over smooth land‐fast first‐year sea ice using observational and modelled data. Changes in probability density functions indicate that depositional and drifting events control the evolution of snow distribution. Geostatistical analysis suggests that snowdrifts increased over the study period, and the orientation was related to the meteorological conditions. At the microscale, the temporal evolution of the snowdrifts was a product of infilling in the valleys between drifts. Results using two shore‐based climate reporting stations (Paulatuk and Tuktoyuktuk, NWT) suggest that on‐ice air temperature and relative humidity can be estimated using air temperature recorded at either station. Wind speed, direction and precipitation on ice cannot be accurately estimated using meteorological data from either station. The temporal evolution of snow distribution over smooth land‐fast sea ice was modelled using SnowModel and four different forcing regimes. The results from these model runs indicate a lack of agreement between observed distribution and model outputs. The reasons for these results are lack of meteorological measurements prior to the end of January, lack of spatially adequate surface topography and discrepancies between meteorological variables on land and ice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
140.
Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号